typerig.core.objects.collection

typerig.core.objects.collection (version 0.28.6)

# MODULE: TypeRig / Core / Collection (Objects)
# -----------------------------------------------------------
# (C) Vassil Kateliev, 2018-2020        (http://www.kateliev.com)
# (C) Karandash Type Foundry            (http://www.karandash.eu)
#------------------------------------------------------------
# www.typerig.com

Modules

  • json

Classes

class CustomDict(_abcoll.MutableMapping)

A more or less complete user-defined wrapper around dictionary objects.
Adapted from Source: https://github.com/enthought/Python-2.7.3/blob/master/Lib/self.__class__.py

Methods

cmp(self, dict)



contains(self, key)



delitem(self, key)



getitem(self, key)



init(self, dict=None, **kwargs)



iter(self)



len(self)



repr(self)



setitem(self, key, item)



clear(self)



copy(self)



get(self, key, failobj=None)



has_key(self, key)



items(self)



iteritems(self)



iterkeys(self)



itervalues(self)



keys(self)



pop(self, key, *args)



popitem(self)



setdefault(self, key, failobj=None)



update(self, dict=None, **kwargs)



values(self)



Class methods

fromkeys(cls, iterable, value=None) from abc.ABCMeta



Attributes

abstractmethods = frozenset([])
hash = None

Methods from abcoll.Mapping

__eq_(self, other)



ne(self, other)



Class methods from abcoll.Sized

__subclasshook_(cls, C) from abc.ABCMeta



Descriptors from abcoll.Sized

__dict_

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from abcoll.Sized

__metaclass_ = <class 'abc.ABCMeta'>

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

class CustomList(_abcoll.MutableSequence)

A more or less complete user-defined wrapper around list objects.
Adapted from Source: https://github.com/enthought/Python-2.7.3/blob/master/Lib/UserList.py

Methods

add(self, other)



cmp(self, other)



contains(self, item)



delitem(self, i)



delslice(self, i, j)



eq(self, other)



ge(self, other)



getitem(self, i)



getslice(self, i, j)



gt(self, other)



iadd(self, other)



imul(self, n)



init(self, initlist=None)



le(self, other)



len(self)



lt(self, other)



mul(self, n)



ne(self, other)



radd(self, other)



repr(self)



rmul = mul(self, n)
setitem(self, i, item)



setslice(self, i, j, other)



append(self, item)



count(self, item)



extend(self, other)



index(self, item, *args)



insert(self, i, item)



pop(self, i=-1)



remove(self, item)



reverse(self)



sort(self, *args, **kwds)



Attributes

abstractmethods = frozenset([])
hash = None

Methods from abcoll.Sequence

__iter_(self)



reversed(self)



Class methods from abcoll.Sized

__subclasshook_(cls, C) from abc.ABCMeta



Descriptors from abcoll.Sized

__dict_

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from abcoll.Sized

__metaclass_ = <class 'abc.ABCMeta'>

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

class attribdict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes.

Methods

delattr(self, name)



getattribute(self, name)



hash(self)



init(self, *args, **kwdargs)



repr(self)



setattr(self, name, value)



contains(self, search, search_type=None)

Does the object contain ANY value or nested object with given name (search)

Attributes:
        search (Str): Search string
        search_type (type) : Value type

Returns:
        Bool

dir(self)



extract(self, search)

Pull all values of specified key (search)

Attributes:
        search (Str): Search string

Returns:
        generator

factory(self, factory_type)



lock(self)



where(self, search, search_type=None)

Pull all objects that contain values of specified search.

Attributes:
        search (Str): Search string
        search_type (type) : Value type
Returns:
        generator

Descriptors

dict

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Methods from collections.defaultdict

copy(...)

D.copy() -> a shallow copy of D.

missing(...)

__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value

reduce(...)

Return state information for pickling.

copy(...)

D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory

Factory for default value called by __missing__().

Methods from builtin.dict

cmp(...)

x.__cmp__(y) <==> cmp(x,y)

contains(...)

D.__contains__(k) -> True if D has a key k, else False

delitem(...)

x.__delitem__(y) <==> del x[y]

eq(...)

x.__eq__(y) <==> x==y

ge(...)

x.__ge__(y) <==> x>=y

getitem(...)

x.__getitem__(y) <==> x[y]

gt(...)

x.__gt__(y) <==> x>y

iter(...)

x.__iter__() <==> iter(x)

le(...)

x.__le__(y) <==> x<=y

len(...)

x.__len__() <==> len(x)

lt(...)

x.__lt__(y) <==> x

ne(...)

x.__ne__(y) <==> x!=y

setitem(...)

x.__setitem__(i, y) <==> x[i]=y

sizeof(...)

D.__sizeof__() -> size of D in memory, in bytes

clear(...)

D.clear() -> None.  Remove all items from D.

fromkeys(...)

dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.

get(...)

D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.

has_key(...)

D.has_key(k) -> True if D has a key k, else False

items(...)

D.items() -> list of D's (key, value) pairs, as 2-tuples

iteritems(...)

D.iteritems() -> an iterator over the (key, value) items of D

iterkeys(...)

D.iterkeys() -> an iterator over the keys of D

itervalues(...)

D.itervalues() -> an iterator over the values of D

keys(...)

D.keys() -> list of D's keys

pop(...)

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem(...)

D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(...)

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update(...)

D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

values(...)

D.values() -> list of D's values

viewitems(...)

D.viewitems() -> a set-like object providing a view on D's items

viewkeys(...)

D.viewkeys() -> a set-like object providing a view on D's keys

viewvalues(...)

D.viewvalues() -> an object providing a view on D's values

Attributes from builtin.dict

new = <built-in method new of type object>

T.__new__(S, ...) -> a new object with type S, a subtype of T

class biDict(CustomDict)

Bi-directioanl dictionary partly based on Basj answer st:
https://stackoverflow.com/questions/3318625/efficient-bidirectional-hash-table-in-python

Methods

delitem(self, key)



init(self, *args, **kwargs)



setitem(self, key, value)



Attributes

abstractmethods = frozenset([])

Methods from CustomDict

cmp(self, dict)



contains(self, key)



getitem(self, key)



iter(self)



len(self)



repr(self)



clear(self)



copy(self)



get(self, key, failobj=None)



has_key(self, key)



items(self)



iteritems(self)



iterkeys(self)



itervalues(self)



keys(self)



pop(self, key, *args)



popitem(self)



setdefault(self, key, failobj=None)



update(self, dict=None, **kwargs)



values(self)



Class methods from CustomDict

fromkeys(cls, iterable, value=None) from abc.ABCMeta



Attributes from CustomDict

hash = None

Methods from abcoll.Mapping

__eq_(self, other)



ne(self, other)



Class methods from abcoll.Sized

__subclasshook_(cls, C) from abc.ABCMeta



Descriptors from abcoll.Sized

__dict_

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from abcoll.Sized

__metaclass_ = <class 'abc.ABCMeta'>

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

class dimList(CustomList)

Custom list object that supports multiple dimensions
Example: 
        a = dimList([[[1, 2, 3, 4], ['a', 'b', 'c', 'd']], [[5, 6, 7, 8], ['e', 'f', 'g', 'h']]])
        print(a[0,1,2])

Methods

getitem(self, *args)



init(self, *args, **kwargs)



setitem(self, *args)



Descriptors

dim

Attributes

abstractmethods = frozenset([])

Methods from CustomList

add(self, other)



cmp(self, other)



contains(self, item)



delitem(self, i)



delslice(self, i, j)



eq(self, other)



ge(self, other)



getslice(self, i, j)



gt(self, other)



iadd(self, other)



imul(self, n)



le(self, other)



len(self)



lt(self, other)



mul(self, n)



ne(self, other)



radd(self, other)



repr(self)



rmul = mul(self, n)



setslice(self, i, j, other)



append(self, item)



count(self, item)



extend(self, other)



index(self, item, *args)



insert(self, i, item)



pop(self, i=-1)



remove(self, item)



reverse(self)



sort(self, *args, **kwds)



Attributes from CustomList

hash = None

Methods from abcoll.Sequence

__iter_(self)



reversed(self)



Class methods from abcoll.Sized

__subclasshook_(cls, C) from abc.ABCMeta



Descriptors from abcoll.Sized

__dict_

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from abcoll.Sized

__metaclass_ = <class 'abc.ABCMeta'>

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

class extBiDict(CustomDict)

Bi-directioanl dictionary with lists for values

Methods

delitem(self, key)



init(self, *args, **kwargs)



setitem(self, key, value)



Attributes

abstractmethods = frozenset([])

Methods from CustomDict

cmp(self, dict)



contains(self, key)



getitem(self, key)



iter(self)



len(self)



repr(self)



clear(self)



copy(self)



get(self, key, failobj=None)



has_key(self, key)



items(self)



iteritems(self)



iterkeys(self)



itervalues(self)



keys(self)



pop(self, key, *args)



popitem(self)



setdefault(self, key, failobj=None)



update(self, dict=None, **kwargs)



values(self)



Class methods from CustomDict

fromkeys(cls, iterable, value=None) from abc.ABCMeta



Attributes from CustomDict

hash = None

Methods from abcoll.Mapping

__eq_(self, other)



ne(self, other)



Class methods from abcoll.Sized

__subclasshook_(cls, C) from abc.ABCMeta



Descriptors from abcoll.Sized

__dict_

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from abcoll.Sized

__metaclass_ = <class 'abc.ABCMeta'>

Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

jsontree = class treeDict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes. Light Version
----
Adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

getattribute(self, name)



init(self, *args, **kwargs)



repr(self)



setattr(self, name, value)



Descriptors

dict

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Methods from collections.defaultdict

copy(...)

D.copy() -> a shallow copy of D.

missing(...)

__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value

reduce(...)

Return state information for pickling.

copy(...)

D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory

Factory for default value called by __missing__().

Methods from builtin.dict

cmp(...)

x.__cmp__(y) <==> cmp(x,y)

contains(...)

D.__contains__(k) -> True if D has a key k, else False

delitem(...)

x.__delitem__(y) <==> del x[y]

eq(...)

x.__eq__(y) <==> x==y

ge(...)

x.__ge__(y) <==> x>=y

getitem(...)

x.__getitem__(y) <==> x[y]

gt(...)

x.__gt__(y) <==> x>y

iter(...)

x.__iter__() <==> iter(x)

le(...)

x.__le__(y) <==> x<=y

len(...)

x.__len__() <==> len(x)

lt(...)

x.__lt__(y) <==> x

ne(...)

x.__ne__(y) <==> x!=y

setitem(...)

x.__setitem__(i, y) <==> x[i]=y

sizeof(...)

D.__sizeof__() -> size of D in memory, in bytes

clear(...)

D.clear() -> None.  Remove all items from D.

fromkeys(...)

dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.

get(...)

D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.

has_key(...)

D.has_key(k) -> True if D has a key k, else False

items(...)

D.items() -> list of D's (key, value) pairs, as 2-tuples

iteritems(...)

D.iteritems() -> an iterator over the (key, value) items of D

iterkeys(...)

D.iterkeys() -> an iterator over the keys of D

itervalues(...)

D.itervalues() -> an iterator over the values of D

keys(...)

D.keys() -> list of D's keys

pop(...)

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem(...)

D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(...)

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update(...)

D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

values(...)

D.values() -> list of D's values

viewitems(...)

D.viewitems() -> a set-like object providing a view on D's items

viewkeys(...)

D.viewkeys() -> a set-like object providing a view on D's keys

viewvalues(...)

D.viewvalues() -> an object providing a view on D's values

Attributes from builtin.dict

hash = None
new = <built-in method new of type object>

T.__new__(S, ...) -> a new object with type S, a subtype of T

class treeDict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes. Light Version
----
Adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

getattribute(self, name)



init(self, *args, **kwargs)



repr(self)



setattr(self, name, value)



Descriptors

dict

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Methods from collections.defaultdict

copy(...)

D.copy() -> a shallow copy of D.

missing(...)

__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value

reduce(...)

Return state information for pickling.

copy(...)

D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory

Factory for default value called by __missing__().

Methods from builtin.dict

cmp(...)

x.__cmp__(y) <==> cmp(x,y)

contains(...)

D.__contains__(k) -> True if D has a key k, else False

delitem(...)

x.__delitem__(y) <==> del x[y]

eq(...)

x.__eq__(y) <==> x==y

ge(...)

x.__ge__(y) <==> x>=y

getitem(...)

x.__getitem__(y) <==> x[y]

gt(...)

x.__gt__(y) <==> x>y

iter(...)

x.__iter__() <==> iter(x)

le(...)

x.__le__(y) <==> x<=y

len(...)

x.__len__() <==> len(x)

lt(...)

x.__lt__(y) <==> x

ne(...)

x.__ne__(y) <==> x!=y

setitem(...)

x.__setitem__(i, y) <==> x[i]=y

sizeof(...)

D.__sizeof__() -> size of D in memory, in bytes

clear(...)

D.clear() -> None.  Remove all items from D.

fromkeys(...)

dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.

get(...)

D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.

has_key(...)

D.has_key(k) -> True if D has a key k, else False

items(...)

D.items() -> list of D's (key, value) pairs, as 2-tuples

iteritems(...)

D.iteritems() -> an iterator over the (key, value) items of D

iterkeys(...)

D.iterkeys() -> an iterator over the keys of D

itervalues(...)

D.itervalues() -> an iterator over the values of D

keys(...)

D.keys() -> list of D's keys

pop(...)

D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem(...)

D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault(...)

D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

update(...)

D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

values(...)

D.values() -> list of D's values

viewitems(...)

D.viewitems() -> a set-like object providing a view on D's items

viewkeys(...)

D.viewkeys() -> a set-like object providing a view on D's keys

viewvalues(...)

D.viewvalues() -> an object providing a view on D's values

Attributes from builtin.dict

hash = None
new = <built-in method new of type object>

T.__new__(S, ...) -> a new object with type S, a subtype of T

class vfj_decoder(json.decoder.JSONDecoder)

VFJ (JSON) decoder class for deserializing to a jsontree object structure.
----
Parts adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

init(self, *args, **kwdargs)



Methods from json.decoder.JSONDecoder

decode(self, s, _w=<built-in method match of _sre.SRE_Pattern object>)

Return the Python representation of ``s`` (a ``str`` or ``unicode``
instance containing a JSON document)

raw_decode(self, s, idx=0)

Decode a JSON document from ``s`` (a ``str`` or ``unicode``
beginning with a JSON document) and return a 2-tuple of the Python
representation and the index in ``s`` where the document ended.

This can be used to decode a JSON document from a string that may
have extraneous data at the end.

Descriptors from json.decoder.JSONDecoder

dict

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

class vfj_encoder(json.encoder.JSONEncoder)

VFJ (JSON) encoder class that serializes out jsontree object structures.
----
Parts adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

init(self, *args, **kwdargs)



default(self, obj)



Methods from json.encoder.JSONEncoder

encode(self, o)

Return a JSON string representation of a Python data structure.

>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

iterencode(self, o, _one_shot=False)

Encode the given object and yield each string
representation as available.

For example::

    for chunk in JSONEncoder().iterencode(bigobject):
        mysocket.write(chunk)

Descriptors from json.encoder.JSONEncoder

dict

dictionary for instance variables (if defined)

weakref

list of weak references to the object (if defined)

Attributes from json.encoder.JSONEncoder

item_separator = ', '
key_separator = ': '

CustomList

typerig.core.objects.collection.CustomList = class CustomList(_abcoll.MutableSequence)

A more or less complete user-defined wrapper around list objects.
Adapted from Source: https://github.com/enthought/Python-2.7.3/blob/master/Lib/UserList.py

Methods

__add__(self, other)


__cmp__(self, other)


__contains__(self, item)


__delitem__(self, i)


__delslice__(self, i, j)


__eq__(self, other)


__ge__(self, other)


__getitem__(self, i)


__getslice__(self, i, j)


__gt__(self, other)


__iadd__(self, other)


__imul__(self, n)


__init__(self, initlist=None)


__le__(self, other)


__len__(self)


__lt__(self, other)


__mul__(self, n)


__ne__(self, other)


__radd__(self, other)


__repr__(self)


__rmul__ = __mul__(self, n)
__setitem__(self, i, item)


__setslice__(self, i, j, other)


append(self, item)


count(self, item)


extend(self, other)


index(self, item, *args)


insert(self, i, item)


pop(self, i=-1)


remove(self, item)


reverse(self)


sort(self, *args, **kwds)


Attributes

__abstractmethods__ = frozenset([])
__hash__ = None

Methods from _abcoll.Sequence

__iter__(self)


__reversed__(self)


Class methods from _abcoll.Sized

__subclasshook__(cls, C) from abc.ABCMeta


Descriptors from _abcoll.Sized

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from _abcoll.Sized

__metaclass__ = <class 'abc.ABCMeta'>
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

dimList

typerig.core.objects.collection.dimList = class dimList(CustomList)

Custom list object that supports multiple dimensions
Example: 
        a = dimList([[[1, 2, 3, 4], ['a', 'b', 'c', 'd']], [[5, 6, 7, 8], ['e', 'f', 'g', 'h']]])
        print(a[0,1,2])

Methods

__getitem__(self, *args)


__init__(self, *args, **kwargs)


__setitem__(self, *args)


Descriptors

dim

Attributes

__abstractmethods__ = frozenset([])

Methods from CustomList

__add__(self, other)


__cmp__(self, other)


__contains__(self, item)


__delitem__(self, i)


__delslice__(self, i, j)


__eq__(self, other)


__ge__(self, other)


__getslice__(self, i, j)


__gt__(self, other)


__iadd__(self, other)


__imul__(self, n)


__le__(self, other)


__len__(self)


__lt__(self, other)


__mul__(self, n)


__ne__(self, other)


__radd__(self, other)


__repr__(self)


__rmul__ = __mul__(self, n)


__setslice__(self, i, j, other)


append(self, item)


count(self, item)


extend(self, other)


index(self, item, *args)


insert(self, i, item)


pop(self, i=-1)


remove(self, item)


reverse(self)


sort(self, *args, **kwds)


Attributes from CustomList

__hash__ = None

Methods from _abcoll.Sequence

__iter__(self)


__reversed__(self)


Class methods from _abcoll.Sized

__subclasshook__(cls, C) from abc.ABCMeta


Descriptors from _abcoll.Sized

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from _abcoll.Sized

__metaclass__ = <class 'abc.ABCMeta'>
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

CustomDict

typerig.core.objects.collection.CustomDict = class CustomDict(_abcoll.MutableMapping)

A more or less complete user-defined wrapper around dictionary objects.
Adapted from Source: https://github.com/enthought/Python-2.7.3/blob/master/Lib/self.__class__.py

Methods

__cmp__(self, dict)


__contains__(self, key)


__delitem__(self, key)


__getitem__(self, key)


__init__(self, dict=None, **kwargs)


__iter__(self)


__len__(self)


__repr__(self)


__setitem__(self, key, item)


clear(self)


copy(self)


get(self, key, failobj=None)


has_key(self, key)


items(self)


iteritems(self)


iterkeys(self)


itervalues(self)


keys(self)


pop(self, key, *args)


popitem(self)


setdefault(self, key, failobj=None)


update(self, dict=None, **kwargs)


values(self)


Class methods

fromkeys(cls, iterable, value=None) from abc.ABCMeta


Attributes

__abstractmethods__ = frozenset([])
__hash__ = None

Methods from _abcoll.Mapping

__eq__(self, other)


__ne__(self, other)


Class methods from _abcoll.Sized

__subclasshook__(cls, C) from abc.ABCMeta


Descriptors from _abcoll.Sized

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from _abcoll.Sized

__metaclass__ = <class 'abc.ABCMeta'>
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

biDict

typerig.core.objects.collection.biDict = class biDict(CustomDict)

Bi-directioanl dictionary partly based on Basj answer st:
https://stackoverflow.com/questions/3318625/efficient-bidirectional-hash-table-in-python

Methods

__delitem__(self, key)


__init__(self, *args, **kwargs)


__setitem__(self, key, value)


Attributes

__abstractmethods__ = frozenset([])

Methods from CustomDict

__cmp__(self, dict)


__contains__(self, key)


__getitem__(self, key)


__iter__(self)


__len__(self)


__repr__(self)


clear(self)


copy(self)


get(self, key, failobj=None)


has_key(self, key)


items(self)


iteritems(self)


iterkeys(self)


itervalues(self)


keys(self)


pop(self, key, *args)


popitem(self)


setdefault(self, key, failobj=None)


update(self, dict=None, **kwargs)


values(self)


Class methods from CustomDict

fromkeys(cls, iterable, value=None) from abc.ABCMeta


Attributes from CustomDict

__hash__ = None

Methods from _abcoll.Mapping

__eq__(self, other)


__ne__(self, other)


Class methods from _abcoll.Sized

__subclasshook__(cls, C) from abc.ABCMeta


Descriptors from _abcoll.Sized

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from _abcoll.Sized

__metaclass__ = <class 'abc.ABCMeta'>
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

extBiDict

typerig.core.objects.collection.extBiDict = class extBiDict(CustomDict)

Bi-directioanl dictionary with lists for values

Methods

__delitem__(self, key)


__init__(self, *args, **kwargs)


__setitem__(self, key, value)


Attributes

__abstractmethods__ = frozenset([])

Methods from CustomDict

__cmp__(self, dict)


__contains__(self, key)


__getitem__(self, key)


__iter__(self)


__len__(self)


__repr__(self)


clear(self)


copy(self)


get(self, key, failobj=None)


has_key(self, key)


items(self)


iteritems(self)


iterkeys(self)


itervalues(self)


keys(self)


pop(self, key, *args)


popitem(self)


setdefault(self, key, failobj=None)


update(self, dict=None, **kwargs)


values(self)


Class methods from CustomDict

fromkeys(cls, iterable, value=None) from abc.ABCMeta


Attributes from CustomDict

__hash__ = None

Methods from _abcoll.Mapping

__eq__(self, other)


__ne__(self, other)


Class methods from _abcoll.Sized

__subclasshook__(cls, C) from abc.ABCMeta


Descriptors from _abcoll.Sized

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from _abcoll.Sized

__metaclass__ = <class 'abc.ABCMeta'>
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC.  An ABC can be subclassed
directly, and then acts as a mix-in class.  You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).

attribdict

typerig.core.objects.collection.attribdict = class attribdict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes.

Methods

__delattr__(self, name)


__getattribute__(self, name)


__hash__(self)


__init__(self, *args, **kwdargs)


__repr__(self)


__setattr__(self, name, value)


contains(self, search, search_type=None)
Does the object contain ANY value or nested object with given name (search)

Attributes:
        search (Str): Search string
        search_type (type) : Value type

Returns:
        Bool
dir(self)


extract(self, search)
Pull all values of specified key (search)

Attributes:
        search (Str): Search string

Returns:
        generator
factory(self, factory_type)


lock(self)


where(self, search, search_type=None)
Pull all objects that contain values of specified search.

Attributes:
        search (Str): Search string
        search_type (type) : Value type
Returns:
        generator

Descriptors

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods from collections.defaultdict

__copy__(...)
D.copy() -> a shallow copy of D.
__missing__(...)
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
__reduce__(...)
Return state information for pickling.
copy(...)
D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory
Factory for default value called by __missing__().

Methods from __builtin__.dict

__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x

__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Attributes from __builtin__.dict

__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

extract

typerig.core.objects.collection.attribdict.extract = extract(self, search) unbound typerig.core.objects.collection.attribdict method
Pull all values of specified key (search)

Attributes:
        search (Str): Search string

Returns:
        generator

where

typerig.core.objects.collection.attribdict.where = where(self, search, search_type=None) unbound typerig.core.objects.collection.attribdict method
Pull all objects that contain values of specified search.

Attributes:
        search (Str): Search string
        search_type (type) : Value type
Returns:
        generator

contains

typerig.core.objects.collection.attribdict.contains = contains(self, search, search_type=None) unbound typerig.core.objects.collection.attribdict method
Does the object contain ANY value or nested object with given name (search)

Attributes:
        search (Str): Search string
        search_type (type) : Value type

Returns:
        Bool

treeDict

typerig.core.objects.collection.treeDict = class treeDict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes. Light Version
----
Adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

__getattribute__(self, name)


__init__(self, *args, **kwargs)


__repr__(self)


__setattr__(self, name, value)


Descriptors

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods from collections.defaultdict

__copy__(...)
D.copy() -> a shallow copy of D.
__missing__(...)
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
__reduce__(...)
Return state information for pickling.
copy(...)
D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory
Factory for default value called by __missing__().

Methods from __builtin__.dict

__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x

__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Attributes from __builtin__.dict

__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

treeDict

typerig.core.objects.collection.jsontree = class treeDict(collections.defaultdict)

Default dictionary where keys can be accessed as attributes. Light Version
----
Adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

__getattribute__(self, name)


__init__(self, *args, **kwargs)


__repr__(self)


__setattr__(self, name, value)


Descriptors

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods from collections.defaultdict

__copy__(...)
D.copy() -> a shallow copy of D.
__missing__(...)
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
__reduce__(...)
Return state information for pickling.
copy(...)
D.copy() -> a shallow copy of D.

Descriptors from collections.defaultdict

default_factory
Factory for default value called by __missing__().

Methods from __builtin__.dict

__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x

__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Attributes from __builtin__.dict

__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

vfj_decoder

typerig.core.objects.collection.vfj_decoder = class vfj_decoder(json.decoder.JSONDecoder)

VFJ (JSON) decoder class for deserializing to a jsontree object structure.
----
Parts adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

__init__(self, *args, **kwdargs)


Methods from json.decoder.JSONDecoder

decode(self, s, _w=<built-in method match of _sre.SRE_Pattern object>)
Return the Python representation of ``s`` (a ``str`` or ``unicode``
instance containing a JSON document)
raw_decode(self, s, idx=0)
Decode a JSON document from ``s`` (a ``str`` or ``unicode``
beginning with a JSON document) and return a 2-tuple of the Python
representation and the index in ``s`` where the document ended.

This can be used to decode a JSON document from a string that may
have extraneous data at the end.

Descriptors from json.decoder.JSONDecoder

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

vfj_encoder

typerig.core.objects.collection.vfj_encoder = class vfj_encoder(json.encoder.JSONEncoder)

VFJ (JSON) encoder class that serializes out jsontree object structures.
----
Parts adapted from JsonTree by Doug Napoleone: https://github.com/dougn/jsontree

Methods

__init__(self, *args, **kwdargs)


default(self, obj)


Methods from json.encoder.JSONEncoder

encode(self, o)
Return a JSON string representation of a Python data structure.

>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'
iterencode(self, o, _one_shot=False)
Encode the given object and yield each string
representation as available.

For example::

    for chunk in JSONEncoder().iterencode(bigobject):
        mysocket.write(chunk)

Descriptors from json.encoder.JSONEncoder

__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Attributes from json.encoder.JSONEncoder

item_separator = ', '
key_separator = ': '